Log in to Mathigon

Google
Create New Account

Reset Password     

Share

Change Language

EnglishVietnamese

Send us feedback!

Please let us know if you have any feedback and suggestions, or if you find any errors and bugs in our content.

Sorry, your message couldn’t be submitted. Please try again!

Thanks for your feedback!

Reset Progress

Are you sure that you want to reset your progress, response and chat data for all sections in this course? This action cannot be undone.

Glossary

Select one of the keywords on the left…

Graphs and NetworksEuler’s Formula

All planar graphs divide the plane they are drawn on into a number of areas, called faces.

Vertices
Faces
Edges
11 Vertices + Faces

Vertices
Faces
Edges
15 Vertices + Faces

Vertices
Faces
Edges
25 Vertices + Faces

When comparing these numbers, you will notice that the number of edges is always than the number of faces plus the number of vertices. In other words, F + V = E + 1. This result is called Euler’s equation and is named after the same mathematician who solved the Königsberg Bridges problem.

Unfortunately, there are infinitely many graphs and we can’t check every one to see if Euler’s equation works. Instead we can try to find a simple proof that works for any graph…

FVE
010

0 + 1  =  0 + 1

The simplest graph consists of a single vertex. We can easily check that Euler’s equation works.
Let us add a new vertex to our graph. We also have to add an edge, and Euler’s equation still works.
If we want to add a third vertex to the graph we have two possibilities. We could create a small triangle: this adds one vertex, one face and two edges, so Euler’s equation still works.
Instead we could simply extend the line by one: this adds one vertex and one edge, and Euler’s equation works.
Let’s keep going: if we now create a quadrilateral we add one vertex, two edges and one face. Euler’s equation still works.

Any (finite) graph can be constructed by starting with one vertex and adding more vertices one by one. We have shown that, whichever way we add new vertices, Euler’s equation is valid. Therefore it is valid for all graphs.

The process we have used is called mathematical induction. It is a very useful technique for proving results in infinitely many cases, simply by starting with the simplest case, and showing that the result holds at every step when constructing more complex cases.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Many planar graphs look very similar to the nets of polyhedra, three dimensional shapes with polygonal faces. If we think of polyhedra as made of elastic bands, we can imagine stretching them out until they become flat, planar graphs:

This means that we can use Euler’s formula not only for planar graphs but also for all polyhedra – with one small difference. When transforming the polyhedra into graphs, one of the faces disappears: the topmost face of the polyhedra becomes the “outside”; of the graphs.

In other words, if you count the number of edges, faces and vertices of any polyhedron, you will find that F + V = E + .

Icosahedron
one of the 5 Platonic Solids
20 Faces, 12 Vertices and 30 Edges

Small Rhombicosidodecahedron
one of the 13 Archimedean Solids
62 Faces, 60 Vertices and 120 Edges

Football, or Truncated Icosahedron
32 Faces (12 black and 20 white),
60 Vertices and__{.red}90__ Edges