Mathematical Treasure Hunt
Introduction

The mathematical treasure hunt is a great activity for fun and engaging mathematics lessons: the pupils follow a trail of clues and mathematical problems around the school site; each clue contains a hint to where the next clue is hidden.

This document includes clues and questions intended for Key Stage 2 (UK) or grades 6–8 (US).

The treasure hunt works best when the class is divided into groups of about 5 children of different abilities. Working in a team, and in a competition, supports team working skills, and even children with difficulties in mathematics can participate.

The questions are taken from a wide range of different topics, and often not directly related to the mathematics curriculum. Some of the problems lend themselves to further discussion afterwards; often there is an article on that topic in the Mathigon World of Mathematics.

The answer to each problem is an integer, and all the answers – once decoded into letters – spell the location of the treasure: the library.

The Questions

<table>
<thead>
<tr>
<th>Name</th>
<th>Locations</th>
<th>Solution</th>
<th>Order of Teams</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Cryptography</td>
<td>18</td>
<td>1 9 7 5 3</td>
<td></td>
</tr>
<tr>
<td>B Combinatorics</td>
<td>18</td>
<td>2 10 8 6 4</td>
<td></td>
</tr>
<tr>
<td>C Graph Theory</td>
<td>2</td>
<td>3 1 9 7 5</td>
<td></td>
</tr>
<tr>
<td>D Number Pyramid</td>
<td>9</td>
<td>4 2 10 8 6</td>
<td></td>
</tr>
<tr>
<td>E Pascal’s Triangle</td>
<td>8</td>
<td>5 3 1 9 7</td>
<td></td>
</tr>
<tr>
<td>F Prime Numbers</td>
<td>25</td>
<td>6 4 2 10 8</td>
<td></td>
</tr>
<tr>
<td>G Probability</td>
<td>20</td>
<td>7 5 3 1 9</td>
<td></td>
</tr>
<tr>
<td>H Platonic Solids</td>
<td>12</td>
<td>8 6 4 2 10</td>
<td></td>
</tr>
<tr>
<td>I Tangram</td>
<td>1</td>
<td>9 7 5 3 1</td>
<td></td>
</tr>
<tr>
<td>J Secret Numbers</td>
<td>5</td>
<td>10 8 6 4 2</td>
<td></td>
</tr>
</tbody>
</table>

Preparation

First choose 10 locations in your school where to hide the different questions (see previous table). Either use the prepared clues (pages 9–10) or come up with your own clues (pages 11–12) to lead to these questions. Print the clues once for each team.

Make sure that the class is able to solve all the problems. Print the introductory sheets and questions (pages 3–8) once for every team and cut them in the middle. Print and cut the additional materials for various problems (pages 13–15).

Put the questions, materials as well as the clues leading to the next question into an envelope, and hide the 10 envelopes around the school site. Keep the two introductory sheets for each team, as well as a different clue for each team – the ones leading to their first problem.

At the beginning of the lesson, divide the class into a couple of teams and give each team the two introductory sheets, as well as their first clue. The treasure is hidden in the library – usually chocolate works well…

Table of Contents

Page 3 Introductory Sheets
Pages 4–8 Problems
Pages 9–10 Clues
Pages 11–12 Customisable Clues
Pages 13–15 Additional Materials

Copyright Notices

The mathematical treasure hunt is part of the Mathigon Project and © Philipp Legner, 2012. Graphics include images by the sxc.hu users ba1969, slafko and spekulator. To be used only for educational purposes.
Mathematical Treasure Hunt

INSTRUCTIONS

Professor Integer was one of the world’s most famous mathematicians, who made discoveries that changed the world forever: from algorithms for computers and internet to statistical calculations and quantum mechanical predictions.

When he died, he had no relatives or close friends but a very large fortune. He believed that only the best mathematicians deserved to find his treasure and created a trail of puzzles and problems.

Many of his diary pages, notes and letters are archived at the University of Cantortown, and they all include clues and hints regarding the location of the treasure.

This treasure hunt will require you to move around your school, find the hidden clues and solve mathematical problems. Each question will contain a clue about where the next problem will be hidden, but every team solves the problems in a different order.

When you find an envelope, take one problem page and one clue. Try to solve the problem, sometimes using additional materials in the envelope; then look for the next problem. You may not find the problems in the correct order!

There are many other children in the school, so avoid any unnecessary noise. Don’t leave your solutions behind for the next team to see, and don’t take more than one copy of each problem — otherwise following teams might not be able to solve the problem.

You are now ready to receive the first clue and a copy of the last letter written by Professor Integer.

Good luck!
Problem A: Cryptography

I think somebody has broken into my study and stolen important documents and calculations. It is a disaster that I have lost my notes, but it is even worse that the thief can read my discoveries and ideas.

In the future, I need to decipher my notes, so that only I can read them. A very easy method was invented by Julius Caesar: you just shift every letter along the alphabet, for example:

```
a b c d e f g h i j k l m n o p q r s t u v w x y z
```  
```
t u n w x y z a b c d e f g h i j k l m n o p q r s t
```  

The word 'mathematician' for example would be shifted to 'ftmaxftmbvbtg'.

To decipher this code, one would have to try all 26 possibilities to shift the letter, which could take a very long time. This should keep my notes safe in the future!

Note: Cryptography is the area of mathematics about finding and breaking codes. It was especially important in wars: during the second world war, the Cambridge Mathematician Alan Turing successfully built one of the first computers to decode the German Enigma coding machine. This could have well been the single most important achievement that led to the allied victory.

There are many much more complicated methods to decode sentences today, some of which (we think) are unbreakable and without which internet banking would be impossible. They use prime numbers and many important mathematical results.

Problem B: Combinatorics

Yesterday was Christmas and I received 6 presents from my friends. When unpacking, a curious question occurred to me: How many different orders are there for me to unpack them?

For example, if the 6 presents are numbered A, B, C, D, E and F, then a few possible orders would be:

```
A B C D E F
B C E F D A
C D A F E B
```

but there are many more. How many are there in total?

I don't think it is practical to write down all possibilities - there are more than 500. Maybe there is a clever method to do it using mathematics!

To get the key number for this problem, divide the result by 40!
Problem C: Graph Theory

Last night I was doodling on a sheet of paper and discovered something curious: some shapes can be drawn all at once, without lifting the pen of the paper, and without drawing any line twice. But for some shapes that is impossible.

How many of these shapes are IMPOSSIBLE to draw without lifting the pen and drawing a line twice?

Can you work out why?

Problem D: Number Pyramid

Last night I was thinking about a large number pyramid. Unfortunately I spilled my coffee, and I lost many of the numbers – only 6 remained legible. I was thinking about it for some time, and I think it is possible to reconstruct the whole pyramid using only those 6 numbers!
Pascal’s Triangle

In mathematics, Pascal’s triangle is a triangular array of binomial coefficients. It is named after the French mathematician Blaise Pascal, but other mathematicians studied it centuries before him in India and China.

A simple construction of the triangle proceeds in the following manner. In the first row, write only the number 1. Then, to construct the elements of following rows, add the two numbers above a cell to make the number in the new cell. For example, the first number in the first row is 0 + 1 = 1, whereas the numbers 1 and 3 in the third row are added to produce the number 4 in the fourth row.

Pascal’s triangle has many interesting properties. It is symmetric, the diagonals are all 1s, the second diagonals are the integers 1, 2, 3, … and the third diagonal are the triangle numbers 1, 3, 6, 10, … Many other interesting number sequences and patterns can be found if you look more closely.

A particularly interesting thing happens when you colour in all cells that are divisible by 2 or 3. The result will be a pattern of many more triangles of various sizes. As you try this with bigger and bigger versions of Pascal’s triangle, it starts looking like a fractal, a shape which repeats itself on

Problem F: Prime Numbers

We say that a number y is a factor of a number x if you can make x by multiplying y with another number. For example, 7 is a factor of 21 since $21 = 7 \times 3$.

A number which has no factors apart from 1 and itself is called a prime number. Note however that 1 itself is not a prime number!

Prime numbers play a very important role in mathematics, since they can’t be divided any further. They are like the “atoms” of numbers.

Eratosthenes, a Greek mathematician, found an easy way to calculate all the prime numbers less than 100. It is called the Sieve of Eratosthenes. You will need one of the 100-tables in the envelope.

How many prime numbers are there less than 100?

We start by circling the smallest prime number, 2. Then we cross out all multiples of 2 less than 100—these numbers can’t be prime numbers, since they are divisible by 2.

Now we circle the next number which is not crossed out, in this case, 3, and cross out all multiples of 3; again these numbers can’t be prime.

Since 4 is crossed out, the next number we circle is 5 and we cross out the remaining multiples of 5. We continue until all numbers are either circled or crossed out (some of them may be crossed out several times!).

Then all remaining circled numbers are prime numbers.

Two lines or curves are orthogonal if they are perpendicular at their point of intersection. Two vectors are orthogonal if and only if their dot product is zero.

Problem E: Pascal’s Triangle

I tried colouring in all cells divisible by 3 in Pascal’s triangle with 16 rows. Guess how long the base of the largest coloured triangle was …

Pascal’s triangle has many interesting properties. It is symmetric, the diagonals are all 1s, the second diagonals are the integers 1, 3, 6, 10, … and the third diagonal are the triangle numbers 1, 3, 6, 10, … Many other interesting number sequences and patterns can be found if you look more closely.

A particularly interesting thing happens when you colour in all cells that are divisible by 2 or 3. The result will be a pattern of many more triangles of various sizes. As you try this with bigger and bigger versions of Pascal’s triangle, it starts looking like a fractal, a shape which repeats itself on
This shape is called an Icosahedron. All faces are equilateral triangles, and it looks the same from every direction. Therefore it is called a Platonic Solid, named after the Greek mathematician Plato. Plato showed that there are only five solids of this kind. He thought that they corresponded to the four classical elements: fire, air, earth and fire, as well as the universe.

Here is a table showing all 5 platonic solids. Can you find a pattern and fill in the gaps?

<table>
<thead>
<tr>
<th>Name</th>
<th>Model</th>
<th>Faces</th>
<th>Vertices</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrahedron</td>
<td></td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Cube</td>
<td></td>
<td>6</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Octahedron</td>
<td></td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Dodecahedron</td>
<td></td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Icosahedron</td>
<td></td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Today I was playing a game with marbles. I had a bag with 50 marbles, some of which were red and some of which were blue. I repeatedly picked a marble at random and then put it back. On average, the chance of getting a red marble was 40%.

How many red marbles were there in the bag?
Today when browsing a shop in Chinatown, I discovered a fantastic game, called Tangram: it consists of geometric shapes which can be combined to make new ones.

You are given a certain shape, like a square, and you have to use all of the tiles available to make that shape.

Unfortunately I mixed up two games and couldn’t figure out which tile didn’t belong there. 8 of the tiles on the back can be used to make a square: find the one that is left over.

I received this letters from Prof. Integer just a couple of days before he died.

Problem I: Tangram

Problem J: Secret Number

Do you think you can break the key to my safe? No? Well, I shall give you a few hints:

* it is a 6-digit number and consists of 1, 2, 3, 4, 5 and 6 in some order
* the whole key is divisible by 6
* if you leave out the last digit, it is divisible by 5
* if you leave out the last two digits, the remaining 4-digit number is divisible by 4
* if you leave out the last three digits, the remaining 3-digit number is also divisible by 3
* the first two digits of the key form a 2-digit number which is divisible by 2.

Can you work out what the 5th digit of my key is?
Full of paper, books and files, Pay the school office some smiles!

Bonjour, Hola, Goddag, Ni Hao, And more if languages allow.

Find the riddle that is given, Where the bits and bytes are livin’.

With watercolour, crayons, pen, The next puzzle is waiting then.

In breaktime it’s brawling, in lessons is still, On the playground the next riddle finding you will.

Where smoke and where fire are common event, The following mystery I will present.
No pupil may enter,
no child may come in,
Where the next clue is hidden,
so you can begin!

Where 10 divided 5 is 2,
The next questions,
it waits for you.

Trumpet fanfares —
no delay!
And music sounds
will lead your way.

Up and down
and left and right,
The staircases
they do excite.

The biggest room
that is in sight,
But try to knock —
it is polite.

Hurry, less than
80 days,
For you to reach
the problem’s place.

Hurry, less than
80 days,
For you to reach
the problem’s place.
Pascal’s Triangle
Print several times for each group, cut out and add to problem E
100 Number Table
Print several times for each group, cut out and add to problem F
Tangram
Print once (on coloured cardboard), cut out and add to problem I
Problem D: Magic Squares

Do you know what a magic square is? A quadratic grid of integers, so that the sum of the numbers in every row, every column and the two diagonals is always the same. Here is a 3×3 magic square with the numbers from 1 to 9. The rows, columns and diagonals all add up to 15:

```
2 7 6
9 5 1
4 3 8
```

Magic squares have also played an important role in Chinese and Arabic mathematics: they were believed to have magical powers and a supernatural meaning.

I found this 4×4 magic square in a book, except that some numbers are missing. Can you fill in the gaps and find the number in the bottom left corner?

```
12 14
13 11
16 10
6 15
```

Note: Maybe you should first determine what the sum of the numbers in every row and column is.